Finite-size scaling for quantum criticality using the finite-element method.
نویسندگان
چکیده
Finite size scaling for the Schrödinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite-element method was shown to be a powerful numerical method for ab initio electronic-structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite-element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, local density approximation, and an "exact" formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.
منابع مشابه
Finite Size Scaling for Criticality of the Schrödinger Equation
By solving the Schrödinger equation one obtains the whole energy spectrum, both the bound and the continuum states. If the Hamiltonian depends on a set of parameters, these could be tuned to a transition from bound to continuum states. The behavior of systems near the threshold, which separates bound-states from continuum states, is important in the study of such phenomenon as: ionization of at...
متن کاملOptimization of Thermalisation Loss in the Quantum Dot Solar Cells using a Finite Element Method
As thermalisation loss is the dominant loss process in the quantum dot intermediate band solar cells (QD-IBSCs), it has been investigated and calculated for a QD-IBSC, where IB is created by embedding a stack of InAs(1-x) Nx QDs with a square pyramid shape in the intrinsic layer of the AlPySb(1-y) p-i-n structure. IB, which is an optically coupled but electrically isolated mini-band, divides th...
متن کاملComparison study of finite element and basis set methods for finite size scaling
We compare two methods of obtaining critical parameters for a quantum Hamiltonian using a finite size scaling approach. A finite element and basis set method were used in conjunction with the finite size scaling to obtain the critical parameters for the Hulthen potential. The critical parameters obtained analytically were the coupling constant c= 1 2 , the critical exponents for the energy =2 a...
متن کاملFinite element method for finite-size scaling in quantum mechanics.
We combined the finite-size scaling method with the finite element method to provide a systematic procedure for obtaining quantum critical parameters for a quantum system. We present results for the Yukawa potential solved with the finite element approach. The finite-size scaling approach was then used to find the critical parameters of the system. The critical values lambda c, alpha, and nu we...
متن کاملGround-state stability and criticality of two-electron atoms with screened Coulomb potentials using the B-splines basis set
We applied the finite-size scaling method using the B-splines basis set to construct the stability diagram for two-electron atoms with a screened Coulomb potential. The results of this method for two-electron atoms are very accurate in comparison with previous calculations based on Gaussian, Hylleraas and finite-element basis sets. The stability diagram for the screened two-electron atoms shows...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 85 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2012